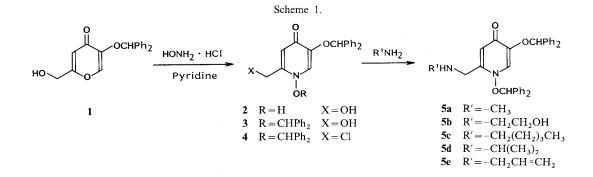
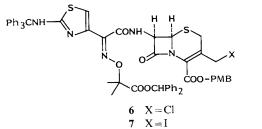
SYNTHETIC CEPHALOSPORINS

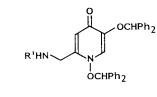
VIII. SYNTHESIS AND ANTIBACTERIAL ACTIVITY OF CP6232, A NEW ANTI-PSEUDOMONAL CEPHALOSPORIN

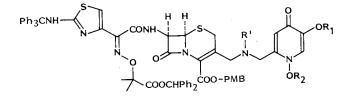

Sir:

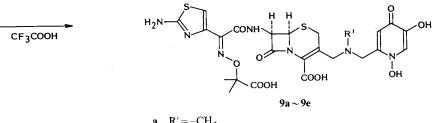
The opportunistic infections caused by various Gram-negative bacteria including *Pseudomonas* aeruginosa, have progressively increased and become a serious problem in chemotherapy. In recent years, it was reported that cephalosporins having a catechol and related aromatics at the C-3 position exhibited potent activity against *Pseudomonas* aeruginosa^{1,2)}. We also reported that cephalosporins having 3-hydroxy-4-pyridone groups at the C-3 or C-7 position of cephalosporins showed excellent antibacterial activity against Gram-negative bacteria including *Pseudomonas* aeruginosa^{3~5)}.

In particular, 7-[(Z)-(2-aminothiazol-4-yl)-2-(1-carboxy-1-methyl) ethoxy iminoacetamido]-3(Z)-[2-(1,5-dihydroxy-4-pyridon-2-yl)ethenyl]-3cephem-4-carboxylic acid (CP6162)⁵⁾ showed excellent antibacterial activity against Pseudomonas aeruginosa. In continuing our efforts to improve the antibacterial activity against Gram-negative bacteria, we examined other possibilities of 2-(1,5dihydroxy-4-pyridon-2-yl)ethenyl group as substituent in the C-3 side chain of cephalosporins by modifying the linkage with the C-3 position. As a result, we found that $7-\lceil (Z)-(2-\text{aminothiazol}-4-\text{yl})-$ 2-(1-carboxy-1-methyl)ethoxyiminoacetamido]-3-[N-(1,5-dihydroxy-4-pyridon-2-yl)methyl-Nmethyl]aminomethyl-3-cephem-4-carboxylic acid (CP6232), in which the 1,5-dihydroxy-4-pyridone entity was connected with the C-3 of the cephalosporin through CH2-N(CH3)-CH2 bonds, showed an excellent antibacterial activity against Gramnegative bacteria including Pseudomonas aeruginosa. This communication describes the synthesis and antibacterial activity of CP6232 and the related compounds.

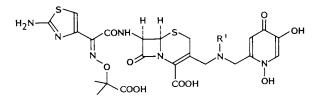

N-(1,5-Diphenylmethoxy-4-pyridon-2-yl)methyl-N-alkylamines ($5a \sim 5e$), required as new side chains of the C-3 position of the cephalosporins, were synthesized as shown in Scheme 1. Compound 3 was prepared from 2-hydroxymethyl-5-diphenylmethoxy-4-pyrone (1) in the manner described previously⁵⁾ and treated with thionyl chloride to give 2-chloromethyl derivative (4), which was, without purification, subjected to react with excess of alkylamines to give the corresponding amines $(5a \sim 5e)$ in good yields. On the other hand, p-methoxybenzyl 7-[(Z)-(2-aminothiazol-4-yl)-2-(1diphenylmethoxycarbonyl-1-methyl)ethoxyiminoacetamido7-3-chloromethyl-3-cephem-4-carboxylate $(6)^{2,3}$ was converted by treatment with NaI in acetone into 3-iodomethyl derivative (7), which reacted with the amines $(5a \sim 5e)$ to give the corresponding protected cephalosporins $(8a \sim 8e)$. Removal of the protective groups of $8a \sim 8e$ with CF_3COOH afford the new cephalosporins (9a ~ 9e), respectively.


The minimum inhibitory concentrations (MICs) of the new cephalosporins were determined by the standard, 2-fold, agar dilution method. In Table 1, the MIC values of these compounds against several Gram-positive and Gram-negative bacteria are summarized and compared with those of ceftazidime (CAZ), which is one of the most potent agents against Pseudomonas aeruginosa used in the current clinical chemotherapy⁶). The new cephalosporins showed an excellent antibacterial activity against Gram-negative bacteria including Pseudomonas aeruginosa. Among them, the compound 9a (CP6232) exhibited the most potent activity against Gram-negative bacteria and the anti-pseudomonal activity was $5 \sim 10$ -fold higher than those of CAZ. As observed in the case of the compounds (9c and 9d), the increasing lipophilicity of the N-substituent





+


a	$K = -CH_3$	
b	$R' = -CH_2CH_2OH$	

- \mathbf{c} $\mathbf{R}' = -\mathbf{CH}_2(\mathbf{CH}_2)_3\mathbf{CH}_3$
- **d** $R' = -CH(CH_3)_2$
- $\mathbf{e} \quad \mathbf{R'} = -\mathbf{CH}_2\mathbf{CH} = \mathbf{CH}_2$

Table 1. ¹H NMR data of 2 Na salts of 3-[N-alkyl-N-(1,5-dihydroxy-4-pyridon-2-yl)methylamino]methylcephalosporins (9a~9e).

Compound	¹ H NMR (400 MHz, δ in D ₂ O, ppm, DOH at 4.82)				
9a	1.56 (6H, s, $(CH_3)_2$), 2.78 (3H, s, NCH_3), 3.4~4.25 (6H, m, 2-H, 3'-H, NH_2), 5.30 (1H, d, $J=5$ Hz,				
(CP6232)	6-H), 5.90 (1H, d, $J = 5$ Hz, 7-H), 6.72 (1H, s, pyridone 3-H), 7.05 (1H, s, thiazole 5-H), 7.70 (1H, s, pyridone 6-H)				
9b	1.50 (6H, br s, (CH ₃) ₂), 2.70 (2H, m, NCH ₂), 3.3~3.8 (8H, m, 2-H, 3'-H, CH ₂ , NCH ₂), 5.15 (1H,				
	d, J=5Hz, 6-H), 5.80 (1H, d, J=5Hz, 7-H), 6.72 (1H, s, pyridone 3-H), 7.00 (1H, s, thiazole 5-H),				
	7.62 (1H, s, pyridone 6-H)				
9с	0.85 (3H, m, CH ₃), 1.2~1.7 (8H, m, (CH ₂) ₄), 1.50 (6H, br s, (CH ₃) ₂), 2.80 (2H, m, NCH ₂), 3.4~4.1				
	$(6H, m, 2-H, 3'-H, NCH_2)$, 5.20 (1H, d, $J=5$ Hz, 6-H), 5.82 (1H, d, $J=5$ Hz, 7-H), 6.70 (1H, s, pyridone 3-H), 7.00 (1H, s, thiazole 5-H), 7.55 (1H, s, pyridone 6-H)				
9d	1.43 (6H, m, (CH ₃) ₂), 1.52 (3H, s, CH ₃), 1.54 (3H, s, CH ₃), 3.3~4.5 (7H, m, 2-H, 3'-H, NCH ₂ , CH),				
	5.15 (1H, d, J=5 Hz, 6-H), 5.85 (1H, d, J=5 Hz, 7-H), 6.65 (1H, s, pyridone 3-H), 7.00 (1H, s, thiazole				
	5-H), 7.65 (1H, s, pyridone 6-H)				
9e	1.52 (3H, s, CH ₃), 1.54 (3H, s, CH ₃), 3.5 (2H, m, NCH ₂), 3.7~4.3 (6H, m, 2-H, 3'-H, NCH ₂), 5.25				
	$(1H, d, J = 5 Hz, 6-H), 5.55 (2H, m, =CH_2), 5.90 (1H, d, J = 5 Hz, 6-H), 6.00 (1H, m, CH=), 6.75 (1H, H), 6.00 (1H, H)$				
	s, pyridone 3-H), 7.05 (1H, s, thiazole 5-H), 7.65 (1H, s, pyridone 6-H)				

Table 2. In vitro activity of 3-[N-alkyl-N-(1,5-dihydroxy-4-pyridon-2-yl)methylamino]methylcephalosporins (MIC: µg/ml).

Test organisms	R'=	-сн ₃	ЛОН	~~~сн ₃	сн ₃ сн ₃	~//	Ceftazidime -
				Compound No.			
		CP6232 (9a)	9b	9c	9d	9e	-
Staphylococcus aureus 606ª		>100	>100	>100	>100	>100	6.25
S. aureus Smith (1)		>100	>100	>100	>100	>100	6.25
Escherichia coli W3630 RGN823 ^a		0.78	0.78	6.25	3.13	0.78	0.39
E. coli No. 29		0.05	0.20	0.78	0.78	0.39	0.20
Klebsiella pneumoniae GN69 ^a		0.05	0.05	0.20	0.39	0.10	0.20
K. pneumoniae PC1602		< 0.025	< 0.025	0.20	0.20	0.05	0.20
Salmonella typhi O-901-W		< 0.025	< 0.025	0.05	0.05	0.05	0.05
S. enteritidis No. 11		< 0.025	< 0.025	0.05	0.05	< 0.025	0.05
Escherichia coli 255 ^b		0.10	0.05	0.10	0.39	0.20	25
Proteus vulgaris GN76 ^b		< 0.025	0.05	0.39	0.20	0.05	0.05
P. vulgaris GN76/C-1/S-1		< 0.025	0.05	0.20	0.20	0.05	0.05
Citrobacter freundii GN346 ^b		12.5	25	25	25	25	100
Enterobacter cloacae GN7471 ^b		0.78	6.25	12.5	12.5	6.25	6.25
E. cloacae G-0008		1.56	3.13	.25	6.25	3.13	0.39
Serratia marcescens GN10857		1.56	3.13	12.5	6.25	6.25	1.56
S. marcescens No. 1		0.20	0.39	1.56	0.78	0.20	0.20
Pseudomonas aeruginosa GN10362 ^b		0.39	0.20	0.78	0.78	0.20	1.56
P. aeruginosa E-2		0.05	0.05	0.39	0.10	0.05	1.56
P. aeruginosa IAM-1007		0.05	0.20	1.56	0.39	0.10	6.25
P. aeruginosa ML Rms139 ^a		< 0.025	0.05	0.39	0.10	0.10	1.56

^a Penicillinase-producing strain.

^b Cephalosporinase-producing strain.

of the C-3' position of the cephalosporin tends to reduce activity especially against β -lactamaseproducing strains, *Enterobacter cloacae* GN7471 and *Enterobacter cloacae* G-0008.

In conclusion, we found that 7-[(Z)-(2-amino-thiazol-4-yl)-2-(1-carboxy-1-methyl)ethoxyimino-acetamido]-3-[<math>N-(1,5-dihydroxy-4-pyridon-2-yl)-methyl-N-methyl]aminomethyl-3-cephem-4-carboxylic acid (**9a**, CP6232), in which the 1,5-dihydroxy-4-pyridone entity was introduced via a unique linkage to the C-3 position of the cephalosporin, showed extremely potent antibacterial activity against Gram-negative bacteria. Although CP6232 showed weak activity against Gram-positive bacteria, present results also demonstrated that 1,5-dihydroxy-4-pyridone entity is a potent substituent in the 3-position of cephalosporin.

Kenji Sakagami Katsuyoshi Iwamatsu Kunio Atsumi Minoru Hatanaka[†]

Pharmaceutical Research Center, Meiji Seika Kaisha, Ltd., Morooka-cho, Kohoku-ku, Yokohama 222, Japan [†]Institute of Scientific and Industrial Research, Osaka University, Mihogaoka, Ibaraki, Osaka 567, Japan

(Received November 28, 1991)

References

- WEISSBERGER, B. A.; G. K. ABRUZZO, R. A. FROMTLING, C. GILL, S. PONTICAS, M. E. VALIANT, D. L. SHUNGU & H. H. GADEBUSCH: L-658,310, a new injectable cephalosporin. I. *In vitro* antibacterial properties. J. Antibiotics 42: 795~806, 1989
- 2) NAKAGAWA, S.; M. SANADA, K. MATSUDA, T. HASHIZUME, Y. ASAHI, R. USHIJIMA, N. OHTAKE & N. TANAKA: In vitro and in vivo antibacterial activities of BO-1341, a new antipseudomonal cephalosporin. Antimicrob. Agents Chemother. 33: 1423~1427, 1989
- 3) SAKAGAMI, K.; K. IWAMATSU, K. ATSUMI & M. HATANAKA: Synthetic cephalosporins. VI. Synthesis and antibacterial activity of 7-[(Z)-2-(2-aminothiazol-4-yl)-2-(1-carboxy-1-methyl)ethoxyiminoacetamido]-3-(3-hydroxy-4-pyridon-1-yl)methyl-3cephem-4-carboxylic acid and related compounds. Chem. Pharm. Bull. 38: 2271 ~ 2273, 1990
- 4) SAKAGAMI, K.; K. IWAMATSU, K. ATSUMI & M. HATANAKA: Synthetic cephalosporins. VII. Synthesis and antibacterial activity of 7-[(Z)-2-(2-aminothiazol-4-yl)-2-[3-(3-hydroxy-4-pyridon-1-yl)-3carboxypropoxyimino)acetamido]-3-(1,2,3-thiadiazol-5-yl)thiomethyl-3-cephem-4-carboxylic acid and its related compounds. Chem. Pharm. Bull. 38: 3476~3479, 1990
- IWAMATSU, K.; K. ATSUMI, K. SAKAGAMI, H. OGINO, T. YOSHIDA, T. TSURUOKA, S. SHIBAHARA, S. INOUYE & S. KONDO: A new antipseudomonal cephalosporin CP6162 and its congeners. J. Antibiotics 43: 1450~1463, 1990
- 6) GARZONE, P.; J. LYON & V. L. YU: Third-generation and investigational cephalosporin: II. Microbiologic review and clinical summaries. Drug Intell. Clin. Pharm. 17: 615~622, 1983